Exploring the Polyadenylated RNA Virome of Sweet Potato through High-Throughput Sequencing
نویسندگان
چکیده
BACKGROUND Viral diseases are the second most significant biotic stress for sweet potato, with yield losses reaching 20% to 40%. Over 30 viruses have been reported to infect sweet potato around the world, and 11 of these have been detected in China. Most of these viruses were detected by traditional detection approaches that show disadvantages in detection throughput. Next-generation sequencing technology provides a novel, high sensitive method for virus detection and diagnosis. METHODOLOGY/PRINCIPAL FINDINGS We report the polyadenylated RNA virome of three sweet potato cultivars using a high throughput RNA sequencing approach. Transcripts of 15 different viruses were detected, 11 of which were detected in cultivar Xushu18, whilst 11 and 4 viruses were detected in Guangshu 87 and Jingshu 6, respectively. Four were detected in sweet potato for the first time, and 4 were found for the first time in China. The most prevalent virus was SPFMV, which constituted 88% of the total viral sequence reads. Virus transcripts with extremely low expression levels were also detected, such as transcripts of SPLCV, CMV and CymMV. Digital gene expression (DGE) and reverse transcription polymerase chain reaction (RT-PCR) analyses showed that the highest viral transcript expression levels were found in fibrous and tuberous roots, which suggest that these tissues should be optimum samples for virus detection. CONCLUSIONS/SIGNIFICANCE A total of 15 viruses were presumed to present in three sweet potato cultivars growing in China. This is the first insight into the sweet potato polyadenylated RNA virome. These results can serve as a basis for further work to investigate whether some of the 'new' viruses infecting sweet potato are pathogenic.
منابع مشابه
De Novo Transcriptome Sequencing of the Orange-Fleshed Sweet Potato and Analysis of Differentially Expressed Genes Related to Carotenoid Biosynthesis
Sweet potato, Ipomoea batatas (L.) Lam., is an important food crop worldwide. The orange-fleshed sweet potato is considered to be an important source of beta-carotene. In this study, the transcriptome profiles of an orange-fleshed sweet potato cultivar "Weiduoli" and its mutant "HVB-3" with high carotenoid content were determined by using the high-throughput sequencing technology. A total of 13...
متن کاملHuman Virome
Viruses are dominant entities in the biosphere and parasitize all cellular life forms. The relative abundances of different classes of viruses are dramatically different between prokaryotes and eukaryotes. In marine, soil and animal-associated environments, virus particles consistently outnumber cells by one to two orders of magnitude. It is estimated that 10 quintillion (1030) viral particles ...
متن کاملReview article: the human intestinal virome in health and disease
BACKGROUND The human virome consists of animal-cell viruses causing transient infections, bacteriophage (phage) predators of bacteria and archaea, endogenous retroviruses and viruses causing persistent and latent infections. High-throughput, inexpensive, sensitive sequencing methods and metagenomics now make it possible to study the contribution dsDNA, ssDNA and RNA virus-like particles make to...
متن کاملDigital Gene Expression Analysis Based on Integrated De Novo Transcriptome Assembly of Sweet Potato [Ipomoea batatas (L.) Lam.]
BACKGROUND Sweet potato (Ipomoea batatas L. [Lam.]) ranks among the top six most important food crops in the world. It is widely grown throughout the world with high and stable yield, strong adaptability, rich nutrient content, and multiple uses. However, little is known about the molecular biology of this important non-model organism due to lack of genomic resources. Hence, studies based on hi...
متن کاملTechnical note : Molecular Index counting adjustment methods
BD Precise assays are fast, high-throughput, next-generation sequencing (NGS) library preparation kits tailored for small quantity RNA samples, such as single cells, using patented BDTM Molecular Indexing (MI) technology with Sample Index (SI) to label individual mRNA transcripts. During reverse transcription, the BD Precise assays apply a non-depleting pool of 6,561 MI barcodes (or 65,536 barc...
متن کامل